
2003/06/17 Open Printing WG Japan/Asia 1

Open Printing Working Group
Japan/Asia

Activities Update

2003/06/17

Osamu MIHARA <mihara.osamu@fxpsc.co.jp>

Yasumasa TORATANI <toratani.yasumasa@canon.co.jp>

2003/06/17 Open Printing WG Japan/Asia 2

n 1. Status

n 2. Bi-di plug-in API

n 3. Vector Device Driver API
– Idea#1 : X print service for Vector Device Support.

– Idea#2 : API based on PS, PDF and SVG

n Schedule

2003/06/17 Open Printing WG Japan/Asia 3

Oct,2003 meeting and Status

n Oct, 2002 Architecture Group Meeting
– Attendees:

Ø Mark Hamzy(IBM), Mihara(FUJI XEROX),
Kido, Shimamura, Irie, Furusawa(IBM Japan),
Kato, Nomura(EPSON), Sakashita(AXE), Yoshiyama(NEC),
Shida, Toratani(Canon)

– Proposals we’ve made at the meeting:
Ø API between the bi-di plug-in module and the upper modules.

– Bi-di plug-in API.

Ø Generic interface between the renderer and driver.

– Vector Printer Driver API.

n Status
– Both groups were suspended from the beginning of 2003.

– Mihara and I had some discussion and started again since May.

2003/06/17 Open Printing WG Japan/Asia 4

Bi-di plug-in (1)
n Background:

– Each printer has a different command to readback the printer
status.

– Lack of the standard way / format to send the local printer status /
capabilities to the upper system.

n Features:
– Obtain the printer status, e.g. Ink level, Paper jam, etc. and send

them to the upper modules in the standard format.
– Obtain the printer dynamic capabilities, e.g. Stapler, Sorter, etc.

and send them to the upper modules in the standard format.

n Objective:
– Aim to be used in each printing system; CUPS, lpr, LPRng, LP,

and the customized printing systems of each vendor, etc... as the
common small plug-in to reduce the development time.

2003/06/17 Open Printing WG Japan/Asia 5

Bi-di plug-in (2)
n The idea of the API:

– Quite simple API for obtaining the printer info.
– Example for the caller;

// Link the bi-di module or fork the bi-di process.
BidiC *pBidi = bidiNew(“bidi_module_name”, fd);

:
while(....) {

// Obtain the printer info. and convert it to the standard format.
bidiRead(pBidi, pBuf, nBufBytes);

:
// Send the standard format info. in the buffer to the upper system.

} :
// Unlink the bi-di module or kill the bi-di process.
bidiDestroy(pBidi);

2003/06/17 Open Printing WG Japan/Asia 6

Bi-di plug-in (3)
n CUPS 1.1.x w/o plug-in:

– Customized backend for each device and each printer model.
Ø # of backends = (# of devices; usb, parallel,etc.) x (# of printer model)

status data

printing data

Application

Scheduler

Berkeley commands

PPD files

config files

SystemV commands

CUPS imaging

Customized
backend for X printer X

CUPS API Lib.

filters

other info.

2003/06/17 Open Printing WG Japan/Asia 7

Bi-di plug-in (4)
n Use case.1: CUPS 1.1.x w/ plug-in:

– Vendor backend for each device and bi-di plug-in for each printer model.
Ø # of vendor backends = # of devices; usb, parallel,etc.

status data

printing data

Application

Scheduler

Berkeley commands

PPD files

config files

SystemV commands

CUPS imaging

Vendor
backend

printer X

CUPS API Lib.

filters

other info.

Bi-di plug-in
for Printer X

2003/06/17 Open Printing WG Japan/Asia 8

Bi-di plug-in (5)
n Use case.2: CUPS 1.2? w/ plug-in:

– CUPS standard backends.

– Vendor monitor and bi-di plug-in for each printer model.

status data

printing data

Application

Scheduler

Berkeley commands

PPD files

config files

SystemV commands

CUPS imaging

CUPS standard
backend printer X

CUPS API Lib.

filters

other info.

Bi-di plug-in
for Printer X

Vendor
monitor

2003/06/17 Open Printing WG Japan/Asia 9

Bi-di plug-in (6)
n Use case.3: Other traditional printing system:

lpr lpd rendererfilterApplication

status data

printing data

Bi-di plug-in
for Printer X

printer X

2003/06/17 Open Printing WG Japan/Asia 10

Bi-di plug-in (7)
n Issue:

– Standard format of the printer status/info. sending back
to the upper system.
ØXML based text format like other standards?

ØKey-Value strings pares separated by space or “,”?

ØFormat adapted to IPP?

– Standard back channel from the bi-di plug-in to the
uppser system.
Østderr ?

Ønamed pipe or socket?

ØOthers?

2003/06/17 Open Printing WG Japan/Asia 11

Bi-di plug-in (8)
n Steps:

– Define the API of bi-di plug-in.

– Define the standard data format.

– Develop a prototype bi-di plug-in.

n Schedule:
– TBD.

2003/06/17 Open Printing WG Japan/Asia 12

Vector Printer Driver API (1)
n Background:

– Lack of performance under the bitmap based driver framework.
Ø Lack of use of acceleration in printer controller
Ø Large data size
Ø Lack of color optimization based on graphic primitives

– Lack of support for non-PS, non-PCL PDL printers.
Ø Need for the drivers for the high performance generic Vector printers.

– Firmly linked with the renderer.
– Depend on each renderer.

Ø Need for the dynamic loading mechanism for the Vector printers.
Ø Need for the renderer independent API.

n Features:
– Generic API for UNIX/Linux.
– Generic API for each PDL; PS, PDF and SVG.
– Generic API for each renderer for each PDL above.
– Generic API for shared library driver as well as IPC driver.

2003/06/17 Open Printing WG Japan/Asia 13

Vector Printer Driver API (2)
n Issue:

– Vector Printer Driver API is...
Ø API between the renderer and each vector printer driver.

– Renderer depends on the metafile format that the applications
generate, since the renderer deals with the operators in the
metafile.

– Which metafile format will we use mainly as the standard under
Linux/Unix in the future?

– Keep using PS and PDF, and use SVG in the future?

– Keep using PS and PDF, and change to the new metafile based on
X with the print extension in the future?

2003/06/17 Open Printing WG Japan/Asia 14

Vector Printer Driver API (3)
n General Structure of Vector Driver

– Job Control Functions
Ø StartDoc/EndDoc
Ø StartPage/EndPage
Ø Cancel

– Graphics Context Control
Ø FGcolor/BGcolor
Ø Pen/Brush
Ø Raster Operation (ROP)
Ø Font
Ø etc.

– Graphics Drawing Functions
Ø DrawPath
Ø Bitmap Manupilation
Ø DrawText
Ø etc.

– Pass-through data (for PS/EPS)
– Band Control Functions
– Job Property Control

Ø Media/tray/finishing...
– Device Configuration Management

Ø Installed Options
– etc.

Driver API

Driver

Print ContextPrint Context

2003/06/17 Open Printing WG Japan/Asia 15

Idea #1: “X Print Service” for Vector support

n Propose “X Print Service” as vector printer driver
framework and API.

n X Print Service
– X Server with X Print Service

Extension
– Extension: operation on

Context, Job, Page, Attributes,
…

– Graphics: Same service as
regular X server

– Print DDX for PCL
(mono/color), PostScript and
Raster are included in XC
distribution

– OpenOffice & Mozilla
Supports X Print.
xprint.mozdev.org

Print
Dialog

Manger
X Application

DIX + OS + Fonts + Other Print Extension

Print DDX

Print Contexts
Job, Document & Page attributes

Server & Printer attributes

XpGetPrinterList
XpGetCreateContext
XpStartJob
 X rendering…
XpEndJob

XpNotifyPdm

Printers config file (config needed)
Printer model files (provided by printer vendors)
Printer attribute files (some config needed)
DDX config files (provided by DDX vendors)

Print Spooler

2003/06/17 Open Printing WG Japan/Asia 16

“X Print Service” as a Vector Driver Framework

n Bunch of Merits
– Good affinity with X applications.

Ø X graphic model is natural in PC Unix world - X Tool kits (Gnome and KDE…) uses Xlib for
drawing after all. X print enables same interface for printing

Ø Application does not need worry about metafiles format.
– No need to reinvent the wheel.

Ø Past achievement as Graphic API set of X11 interface. - We can reuse know-how and efforts
Ø Some sample implementations already exist (PCL, PostScript, Raster, PDF, etc.)
Ø Ongoing project (http://xprint.mozdev.org/) … Mozilla & OpenOffice support X print service.

– No license woes
Ø Xlib (MIT license) – no problem on linking with GPL rendering programs such as Ghostscript
Ø Interface between client and server is RPC based on TCP/IP
Ø X Server is MIT license – printer vendor can distribute their own printer driver (DDX) in

binary.

n Demerits we have to conquer
– Old design as graphics API. Need extension for strong graphic capabilities

Ø Bezier curve, raster operation, color matching
– Only supports 16 bits (i.e. short type) coordinates system – cannot print on A0 size or

banner paper in high resolution.
n Need to verify…

– Performance – assured for video control, but need to verify with printers (higher
resolution than video)

– Required resource – code size, memory (for embedded systems and PDA’s)

2003/06/17 Open Printing WG Japan/Asia 17

First Step: Vector Support on Ghostscript using X Print

n How…
– Built-in X print client as a

vector driver into Ghostscript
– The client translates GS vector

operation into X operations.
– The client communicate with X

Print Server to generate PDL.

n So what?
– Support APPs which generate

PostScript for printing
– No visibility change for APPs.
– Faster printing on high end

laser printers.

n Extension
– Job Attribute via Job Ticket

PDL PDL

PostScript Parser

graphics processing core

renderer

IJS
client

raster

X Print Client

X Print Server
(Printer Driver)

X Protocol IJS protocol

PDL

IJS Server

GS Vector API

libX11 libXp+ext.

X Graphics API

PostScript

raster
printer
driver

raster

2003/06/17 Open Printing WG Japan/Asia 18

-Xp reinforcement for
support of OpenPrinting JT
-X Graphics capability
reinforcement (Bezier…)

-Promote use of X print to
APP writers
-Further reinforcement of X
graphics capabilities (font,
color…)

-Definition of X-protocol-
based metafile
-Extend libX11/libXp to
generate metafile
-Metafile playback

Strategy for higher level graphics printer driver support

GS
spooler

Raster Driver

APP

printer

PS

PS
lpr

PDL

PDL

Current

PAPI

GS
spooler

X Print Service

APP

printer

PS

PS+JT

PDL

PDL

Vector Driver Support

spooler

APP

printer

X Print Service

PDL

PDL

X+Xp Ext.
API

PAPI

Vector API for APP

spooler

APP

printer

libX11/libXp

PDL

Metafile based
on X Protocol

Metafile
Playback

X Print Server

PDL

PAPI

X+Xp Ext.
API

Target

Printing based on PS
graphic model

Unified graphic model
for display and print

(WYSIWYG)

2003/06/17 Open Printing WG Japan/Asia 19

To-do's for 1st Step
n Clarification of requirement and

spec.
– Study current Xp spec.
– Extension to take in OpenPrint

spec. such as JTAPI.
– Extension to X Server

Graphics capability
– Dynamic configuration

Ø Dynamic loading of X Print
DDX

Ø Device Configuration
Ø Device Status
Ø Interaction with User

Interface settings
– Coordination in OpenPrinting

Architecture
Ø Legacy AP support
Ø Data flow
Ø Metafile?

n Implementation
– Client

Ø Integrate Xp Client into
Ghostscript

– Server
Ø Extension of Xp protocol
Ø Dynamic Configuration

Management
Ø Spooler interface

n Verification
– Performance
– Application
– Usability

n Standardization and Cooperation
– FSG OpenPrinting WG
– X Consortium?
– X Print Project? (mozdev.org)
– XFree86?

2003/06/17 Open Printing WG Japan/Asia 20

Idea #2: API based on PS, PDF and SVG

n Graphics Model’s viewpoint:
– PS, PDF and SVG have the similar Graphics Model.

Ø Path: moveto, lineto, curveto, closepath, etc...
Ø Painting: fill, stroke, etc...

– Graphics model of PS, PDF and SVG are wider than that of the
original X.
Ø Wider model can support the restricted model.
Ø Restricted model can’t support the wider model.

n Renderer’s viewpoint:
– Major PS renderer, e.g. Ghostscript, has the function entries of

each operator to register each vector device’s functions.
Ø beginpath, moveto, lineto, curveto, closepath, endpath. etc...

– SVG renderer will have the similar function entries.

2003/06/17 Open Printing WG Japan/Asia 21

API based on PS, PDF and SVG (2)
n API design policy:

– Prepare the common function entries called from the renderer.
Ø newpath, moveto, lineto, curveto, closepath, endpath, etc. (TBD)
Ø setlinewidth, setcolor, setjoin, setcap, setmiterlimit, etc. (TBD)

– Glue code linked to the renderer converts the renderer’s request
to call the appropriate APIs of the driver.

– Prepare the common callback entries from the driver to the renderer.
Ø Driver can call the renderer’s function.
Ø Glue code prepare the callback entries.

– Hide the renderer dependent stuff to keep the driver generic.
Ø Pass the renderer’s stuff to the driver as the generic context including

the pointer to the renderer’s stuff.
Ø Driver obtains several properties in the renderer’s stuff by using the

common callback entries.

2003/06/17 Open Printing WG Japan/Asia 22

API based on PS, PDF and SVG (3)

n API design policy (cont):
– Not restrict the printer’s features.

Ø If some printer support the command of “curveto”, API will support
its function.

2003/06/17 Open Printing WG Japan/Asia 23

API based on PS, PDF and SVG (4)

n Basic Diagram: Renderer, Glue code and Driver.

Renderer
function_entries[]=
{
 moveto
 lineto
 curveto
 closepath
 :
};

Glue code

glue_moveto

glue_lineto

glue_curveto

glue_closepath

 :
glue_get_colordepth

Driver

driver_begin_path

driver_moveto

driver_lineto

driver_curveto

driver_closepath

driver_endpath
 :
driver_get_colordepth

Application

Printing
System

ps, pdf, svg

ps, pdf, svg

backend

Printer

printer commands

function call

printing data

register

- Glue Code for each renderer.
- Driver for each printer model.

2003/06/17 Open Printing WG Japan/Asia 24

API based on PS, PDF and SVG (5)

n IPC Extension:

Renderer
function_entries[]=
{
 moveto
 lineto
 curveto
 closepath
 :
};

Glue code

glue_moveto

glue_lineto

glue_curveto

glue_closepath

 :
glue_get_colordepth

Driver

driver_begin_path

driver_moveto

driver_lineto

driver_curveto

driver_closepath

driver_endpath
 :
driver_get_colordepth

Application

Printing
System

ps, pdf, svg

ps, pdf, svg

backend

Printer

printer commands

function call

printing data

register

Driver IPC wrapper

Glue code IPC wrapper

IPC protocol

2003/06/17 Open Printing WG Japan/Asia 25

API based on PS, PDF and SVG (6)

n Steps:
– Make a list of the function entries that renderer needs.

Ø1st implementation is Ghostscript.

– Make a list of the function entries that printers need.

– Select the Xprint model or PS/PDF/SVG model.
– Define the API.

– Define the IPC protocol.

– Develop a prototype glue code and driver.

2003/06/17 Open Printing WG Japan/Asia 26

Schedule
n End of July Select the architecture Xprint or

“API based on PS,PDF and SVG”

n End of Sep. Define API.

n Oct. Trial implementation for GS.

2003/06/17 Open Printing WG Japan/Asia 27

Thank you for your time and interest.

This presentation data will be stored in;

ftp://ftp.pwg.org/pub/pwg/fsg/June2003_meeting_slides/

OpenPrintWGJapan030617.ppt

