
Free Standards Printing Working Group Ben Woodard
Working Draft V1 Red Hat Inc.
Catagory: proposed standard February 7, 2002

 API and SPI for handling printer capabilities

Status of this Memo

This memo is a working draft for use within the Free Standards
Printing Working Group. It does not specify an Internet standard of
any kind. Distribution of this memo is unlimited.

Copyright Notice

Copyright (C) Ben Woodard (2002) All Rights Reserved

Abstract

Table of Contents

1. Introduction
2. Overview
3. Existing Definitions
4. Data Structures and Enumerations
4.1 UIType Enumeration
4.2 SectionOrder Enumeration
4.3 Choice Data Structure
4.4 Option Data Structure
5. API Functions
6. Sample usage
7. Interface with the Spooler API
8. SPI

1. Introduction

This document defines a proposed standard for manipulating printer
capabilities information from the programatic point of view. In other
words, it specifies the data structures and function calls which
elements of the print system use to pass around information about the
printer capabilities. It takes great pains to avoid either defining an
on disk format or network protocol to pass this capabilities
information around. Other standards, such as Adobe's PPD file format,
the IETF's PWG's UPDF, and IPP already suitably define those standards.

2. Overview

The world of printing has changed over the past few years. In the
past, printers had very few capabilities that an application needed to
worry about. One extreme of this is the ASCII only text printer. Whose
sole ability was inscribe an ASCII data stream onto paper. These days,
printers are dramatically more featureful, they have duplexers,
finishers, different imaging models, and a whole host of features that
an application may want to make use of.

Many different attempts have been made to describe the format in which
printer capabilities can be encoded either for persistant storage or
for transport across a network protocol. However, to our knowlege no

attempt has been made in the UNIX world to provide an API to access
this information. As applications become more sophisticated and no
longer emit simple text, they need to have information about what the
destination printer can do, and how to make the printer do that. Also,
some of the features are user selections and so information about how
to present these options to a user is also necessary.

Also since there are many different sources for this information, some
of them network protocols, some of them static representations such as
disk files, and some of them processes which directly communicate with
a printing device, a standard must also be defined which defines how
the sources of this information should provide their information to
the agent which collects the information and organizes it into a
consistant view for the application.

3. Existing Definitions

BSD -- Berkley Software Distribution. The first publicly released
version of UNIX distributed in source code format.

BSD LPD -- The original print spooler for the BSD UNIX operating
system.

IPP - IPP IS an acronym for Internet Printing Protocol. It was
developed by the IETF's PWG. This protocol specifies several
things. The most fundemental is how a print job and all the associated
metadata can be sent from one machine to another. It also covers
discovery of available printers. This protocol is largly seen as the
successor to the LPD Protocol.

LPD Protocol -- The internet protocol used by BSD's LPD and a whole
host of other print spoolers and printing devices to transmit print
jobs between internet connected devices.

PDL - PDL is an acronym for Page Description Language. It is a
structure of data which describes how to put ink on a piece of paper
or a series of pieces of paper.

PostScript -- Adobe Systems Inc. defined a device independant PDL that
has been widely deployed on laser printers as well as other printing
devices and other non-printing related systems.

PPD files -- Adobe Systems Inc. Defined a de

Printer Capabilities -- Printer capabilities are three distinct
things. They are the physical limiations and features of the printing
device, information on how to access these features and information on
how to present this information to the user.

UPDF -- An acronym for Universal Printer Description Format. Whereas
PPD files are only applicable to PostScript printers, UPDF is an
evolving standard that codifies similar information for all types of
printers including PostScript and simple ink jet printers.

4. Data Structures and Enumerations

The overall structure of the data is as follows:

 +------------------------------------+
 | Printer Capabilities |
 +------------------------------------+
 | * Various information |
 | about printer |
 | +----------------+ |
 | | Key/Value/Type | |
 | +----------------+ |
 | |
 | * List of Groups |
 | +------------------------------+ |
 | | * Group name | | | | | |
 | | * List of Options | |
 | | +----------------------+ | |
 | | | * keyword | | |
 | | | * default | | |
 | | | * section | | |
 | | | * order | | |
 | | | * List of Choices | | |
 | | | +----------------+ | | |
 | | | | * name | | | |
 | | | | * text | | | |
 | | | | * code | | | |
 | | | +----------------+ | | |
 | | +----------------------+ | |
 | | * List of Subgroups | |
 | | (recursive groups) | |
 | +------------------------------+ |
 +------------------------------------+

The overall printer capabilites structure contains a few hard coded
elements and a few lists of information that will always be needed. It
will also contain a dynamic key/value/type structure where arbitrary
information can be stored.

Also inside of the capabilities structure there is a list of groups of
options. These groups can have recursive subgroups and also a list of
options. Having a heirarchy of groups and subgroups allows the printer
vendor to provide some logical structure to the capabilities for
display purposes. It also allows allows different contributors of the
overall printer capabilities information to store their groupings of
options together.

The options are the actual features that are set by the user. They
need some identifying unique keyword, a default action, a section in
which they will be emmitted as well as some representation of a
value. In many cases this representation will be a list of choices, a
string, or a number.

The data structures that are presented below in their most minimal
form. Different implementations can add additional members to the
structures as their implementation requires but they must support at
least specified items.

4.1 UIType Enumeration

When an option is displayed, it is represented with one of several
kinds of widgets and those widgets put constraints on what kind of
value the option can take on. For example, a pickone kind of option
would allow the user to pick one of discrete list of values whereas an
UI type of string would allow the input of a string.

 typedef enum { // *** UI types ***
 LPSCAP_UI_BOOLEAN, // True or False option
 LPSCAP_UI_PICKONE, // Pick one from a list
 LPSCAP_UI_PICKMANY, // Pick zero or more from a list
 LPSCAP_UI_STRING,
 LPSCAP_UI_INT,
 LPSCAP_UI_FLOAT
 } LPSCapUIType;

4.2 SectionOrder Enumeration

When constructing the print data, their are several logical points
within a print job. Many options only make sense in the context of
these transition points within a print job. This enumeration specifies
where a particular printer control command actually makes sense.

 typedef enum { // *** Order dependency sections ***
 LPSCAP_ORDER_ANY, // Option code can be anywhere in the
file
 LPSCAP_ORDER_DOCUMENT, // ... must be in the DocumentSetup
section
 LPSCAP_ORDER_EXIT, // ... must be sent prior to the document
 LPSCAP_ORDER_JCL, // ... must be sent as a JCL command
 LPSCAP_ORDER_PAGE, // ... must be in the PageSetup section
 LPSCAP_ORDER_PROLOG // ... must be in the Prolog
section
 } LPSCapSectionOrder;

4.3 Choice Data Structure

In many cases the value of an option will be a one of many possible
choices. The Choice data structure represents the an individual choice.

 typedef struct { // *** Option choices ***
 boolean marked; // 0 if not selected, 1 otherwise
 char *choice; // Computer-readable option name: 41
chars
 char *text; // Human-readable option name: 81 chars
 char *code; // Code to send for this option NOT NULL
term
 unsigned codelen; // length of code.
 } LPSCapChoice;

The computer readable version of the string is a normal NULL
terminated C string.

The text version is a UTF4 encoded multibyte character NULL terminated
string designed to be readable to the user. At the time that the
capabilities structure is prepared for the user, the appropriate
translation of the human readable strings is selected and inserted

into the structure.

The code is the stream of data to send to the printer to activate this
choice for the option that contains it. This string is an 8 bit clean
string of length codelen rather than a NULL terminated string. In most
cases, an application will not care about how to turn a feature on but
will rather, pass the fact that this option is set to a particular
value in a print job attribute. Only applications which feel that they
need very tight control over the generation of printer data should
make use of the code variable.

4.2 Option Data Structure

The option data structure is the logical representation of one feature
or one user selectable item.

 typedef struct { // *** Options ***
 boolean conflicted; // 0 if no conflicts exist, 1 otherwise
 boolean emitted; // 1 already emitted 0 otherwise

 char *keyword; // Option keyword name ("PageSize", etc.)
 char *defchoice; // Default option choice
 char *text; // Human-readable text

 LPSCapUIType ui; // Type of UI option
 LPSCapSectionOrder section; // Section for command
 float order; // Order number
 LPSCapChoice *choices; // should be a GSList of PpdChoice
objects
 char *value; // other values
 } LPSCapOption;

5. API Functions
6. Sample usage
7. Interface with the Spooler API
8. SPI

